Bibliografi#

Referanser#

[Bal88]

Nicolas Balacheff. Aspects of proof in pupils’ practice of school mathematics. Mathematics, teachers and children, 216:235, 1988.

[EV11]

Ole Enge and Anita Valenta. Argumentasjon og regnestrategier. Tangenten — tidsskrift for matematikkundervisning, 22(4):27–32, 2011. URL: https://www.matematikksenteret.no/sites/default/files/attachments/MAM/Revisjon%2020-21/Enge_Valenta_Argumentasjon_og_regnestrategier.pdf.

[HS98]

Guershon Harel and Larry Sowder. Students’ proof schemes: results from exploratory studies. American Mathematical Society, 7:234–283, 1998.

[HS97]

Marjorie Henningsen and Mary Kay Stein. Mathematical tasks and student cognition: classroom-based factors that support and inhibit high-level mathematical thinking and reasoning. Journal for research in mathematics education, 28(5):524–549, 1997. Yf307 Times Cited:336 Cited References Count:29. URL: <Go to ISI>://WOS:A1997YF30700002, doi:Doi 10.2307/749690.

[HRG16]

Kristin Ran Choi Hinna, Reinert A Rinvold, and Trond Stølen Gustavsen. QED 5‒10 Matematikk for grunnskolelærerutdanningen. Volume 1 of QED. Cappelen Damm Akademisk, 1 edition, 2016. ISBN 978-82-7634-890-3.

[HAFS04]

Kimberly Hufferd-Ackles, Karen C Fuson, and Miriam Gamora Sherin. Describing levels and components of a math-talk learning community. Journal for research in mathematics education, 35(2):81–116, 2004. 778mw Times Cited:179 Cited References Count:39. URL: <Go to ISI>://WOS:000189246200002, doi:Doi 10.2307/30034933.

[KPSN16]

Carolyn Kieran, JeongSuk Pang, Deborah Schifter, and Swee Fong Ng. Early algebra: Research into its nature, its learning, its teaching. Springer Nature, 2016. URL: https://library.oapen.org/bitstream/handle/20.500.12657/27822/1002183.pdf.

[Kuchemann78]

Dietmar Küchemann. Children's understanding of numerical variables. Mathematics in school, 7(4):23–26, 1978.

[LN00]

G. Lakoff and R.E. Nunez. Where Mathematics Come From How The Embodied Mind Brings Mathematics Into Being. Basic Books, 2000. ISBN 9780465037704. URL: https://books.google.no/books?id=K4PwAAAAMAAJ.

[Lam12]

S.J. Lamon. Teaching Fractions and Ratios for Understanding: Essential Content Knowledge and Instructional Strategies for Teachers. Routledge, 2012. ISBN 9780415886123. URL: https://books.google.no/books?id=uoCOSQAACAAJ.

[Lan05]

John K Lannin. Generalization and justification: the challenge of introducing algebraic reasoning through patterning activities. Mathematical Thinking and learning, 7(3):231–258, 2005.

[Lit17]

Johan Lithner. Principles for designing mathematical tasks that enhance imitative and creative reasoning. Zdm, 49(6):937–949, 2017. Fj6un Times Cited:21 Cited References Count:53. URL: HYPERLINK "http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ResearchSoft&SrcApp=EndNote&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000412893600010"<Go to ISI>://WOS:000412893600010, doi:10.1007/s11858-017-0867-3.

[MMBD05]

Tami S Martin, Sharon M Soucy McCrone, Michelle L Wallace Bower, and Jaguthsing Dindyal. The interplay of teacher and student actions in the teaching and learning of geometric proof. Educational Studies in Mathematics, 60(1):95–124, 2005.

[MBS10]

J. Mason, L. Burton, and K. Stacey. Thinking Mathematically. Pearson, 2010. ISBN 9780273728917. URL: https://books.google.no/books?id=nCNVQgAACAAJ.

[MS06]

Neil Mercer and Claire Sams. Teaching children how to use language to solve maths problems. Language and Education, 20(6):507–528, 2006.

[MYM12]

Mary Mueller, Dina Yankelewitz, and Carolyn Maher. A framework for analyzing the collaborative construction of arguments and its interplay with agency. Educational Studies in Mathematics, 80(3):369–387, 2012. 953oz Times Cited:21 Cited References Count:34. URL: <Go to ISI>://WOS:000304881000005, doi:10.1007/s10649-011-9354-x.

[PPS12]

Marina Palla, Despina Potari, and Panagiotis Spyrou. Secondary school students’understanding of mathematical induction: structural characteristics and the process of proof construction. International Journal of Science and Mathematics Education, 10(5):1023–1045, 2012.

[Pin11]

Pernille Pind. Håndbok i matematikkundervisning. Cappelen Damm Akademisk, 2011.

[Rad10]

Luis Radford. The eye as a theoretician: seeing structures in generalizing activities. For the learning of mathematics, 30(2):2–7, 2010.

[RK10]

David A Reid and Christine Knipping. Proof in mathematics education: Research, learning and teaching. Brill, 2010. ISBN 946091246X.

[Sfa91]

Anna Sfard. On the dual nature of mathematical conceptions: reflections on processes and objects as different sides of the same coin. Educational studies in mathematics, 22(1):1–36, 1991.

[SGH96]

Mary Kay Stein, Barbara W Grover, and Marjorie Henningsen. Building student capacity for mathematical thinking and reasoning: an analysis of mathematical tasks used in reform classrooms. American educational research journal, 33(2):455–488, 1996. Vg878 Times Cited:540 Cited References Count:40. URL: <Go to ISI>://WOS:A1996VG87800008, doi:Doi 10.3102/00028312033002455.

[Sty07]

Andreas J. Stylianides. Proof and proving in school mathematics. Journal for Research in Mathematics Education, 38(3):289–321, 2007. URL: http://www.jstor.org/stable/30034869 (visited on 2023-09-19).

[Arnesen22]

Kristin Krogh Arnesen. Generiske eksempler som argumentasjon. Tangenten — tidsskrift for matematikkundervisning, 33(1):2‒8, 2022. URL: http://www.tangenten.no/wp-content/uploads/2022/01/tangenten-1-2022-krogh_arnesen.pdf.

[HovikSolem21]

Ellen Konstanse Hovik and Ida Heiberg Solem. Bevis og generalisering i skolen — utfordringer og muligheter, chapter 3, pages. Volume of. Cappelen Damm Akademisk, 2 edition, 2021.

[KlavenessKarlsenKverndokken19]

Elise Klaveness, Lisbet Karlsen, and Kåre Kverndokken. 101 grep for å aktivisere elever i matematikk. 101serien. Fagbokforlaget, 1 edition, 2019. ISBN 9788245024524.