Flere kategoriske parametre#

Forutsetninger og læringsmål#

Flere parametre. En serie.

Mengder og sannsynlighet QED 7.6s790

Representasjon

  • Tabell, hisogram, is

https://ndla.no/subject:1:b561f04f-d633-453e-b0ce-84985f97969b/topic:1:7be1e83a-44f8-4f71-ae7b-7f7357c5884a/topic:1:983082a4-614f-44c9-a7af-cf8ce4a27947/ kombinattorikk

Introduksjon#

Referanser#

Kombinatorikk (Klaveness et al, 2019) 42s242

Eksempler#

Terning#

Mynt#

Is#

<🔴🔵🟢

Begrep#

Ordnet (permutasjon) og uordnet (kombinasjon#

Er isen <🔴🔵 forskjellig fra <🔵🔴?

Om <🔴🔵 regnes som forskjellig fra <🔵🔴, sier vi at vi har ordnet utvalg (permutasjon). Vi burde kanskje ikke si at “utvalget er ordnet”, men at “ordningen betyr noe” i utvalget. Men i tradisjonell ordbruk sier vi altå at utvalget er ordnet om rekkefølgen betyr noe, og uordnet om rekkefølgen ikke betyr noe.

Når vi kaster to terninger og summerer svarene, betyr rekkefølgen ikke noe; da har vi uordnet utvalg (kombinasjon).

Rekkefølger QEDStning13 s818

Med og uten repetisjon / tilbakelegging#

Kan man velge samme kule to ganger? Altså: Er <🟢🟢 en mulig is?

https://www.matematikk.org/artikkel.html?tid=154542&within_tid=154366

Representasjoner#

Ord#

Utfallstre Valgtre#

https://www.matematikk.org/artikkel.html?tid=154554&within_tid=154366

Småstein og fliser#

Algoritmer#

Lover 1#

Multiplikasjonsloven utvidet#

Multiplikasjonsloven utvidet QED Setning 12 s816.

Lover 2: Utvalgstypene#

Undervisningsopplegg: https://www.matematikk.org/uopplegg.html?tid=105780

Wikipedia:kombinatorikk

Ordnet utvalg med tilbakelegging#

QED 7.8.2 s822

\(n^k\).

Eksempel: Tippekupongen; 12 kamper med 3 muligheter hver (H, U,B): \(12^3\)

Eksempel is: Av tekniske grunner skrives 🔵 som ‘b’, 🔴 som ‘r’ og 🟢 som ‘g’.

\(n\) blir her antall kuler (nivå i treet), mens \(k\) er antall valgmuligheter i hvert nivå.

graphvizSource("""digraph G{
  compound=true;
  rankdir=TB
  ranksep="0.3"
  nodesep="0.01"
  pad=0
  node[shape="plaintext"]
  edge [fontsize=10]
  start [label="Start" ]
  start -> b [color=blue]
  start -> r [color=red]
  start -> g [color=green]
    b -> bb [color=blue]
    b -> br [color=red]
    b -> bg [color=green]
    r -> rb [color=blue]
    r -> rr [color=red]
    r -> rg [color=green]
    g -> gb [color=blue]
    g -> gr [color=red]
    g -> gg [color=green]
    bb -> bbb [color=blue]
    bb -> bbr [color=red]
    bb -> bbg [color=green]
    br -> brb [color=blue]
    br -> brr [color=red]
    br -> brg [color=green]
    bg -> bgb [color=blue]
    bg -> bgr [color=red]
    bg -> bgg [color=green]
    rb -> rbb [color=blue]
    rb -> rbr [color=red]
    rb -> rbg [color=green]
    rr -> rrb [color=blue]
    rr -> rrr [color=red]
    rr -> rrg [color=green]
    rg -> rgb [color=blue]
    rg -> rgr [color=red]
    rg -> rgg [color=green]
    gb -> gbb [color=blue]
    gb -> gbr [color=red]
    gb -> gbg [color=green]
    gr -> grb [color=blue]
    gr -> grr [color=red]
    gr -> grg [color=green]
    gg -> ggb [color=blue]
    gg -> ggr [color=red]
    gg -> ggg [color=green]
   }""")
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[1], line 1
----> 1 graphvizSource("""digraph G{
      2   compound=true;
      3   rankdir=TB
      4   ranksep="0.3"
      5   nodesep="0.01"
      6   pad=0
      7   node[shape="plaintext"]
      8   edge [fontsize=10]
      9   start [label="Start" ]
     10   start -> b [color=blue]
     11   start -> r [color=red]
     12   start -> g [color=green]
     13     b -> bb [color=blue]
     14     b -> br [color=red]
     15     b -> bg [color=green]
     16     r -> rb [color=blue]
     17     r -> rr [color=red]
     18     r -> rg [color=green]
     19     g -> gb [color=blue]
     20     g -> gr [color=red]
     21     g -> gg [color=green]
     22     bb -> bbb [color=blue]
     23     bb -> bbr [color=red]
     24     bb -> bbg [color=green]
     25     br -> brb [color=blue]
     26     br -> brr [color=red]
     27     br -> brg [color=green]
     28     bg -> bgb [color=blue]
     29     bg -> bgr [color=red]
     30     bg -> bgg [color=green]
     31     rb -> rbb [color=blue]
     32     rb -> rbr [color=red]
     33     rb -> rbg [color=green]
     34     rr -> rrb [color=blue]
     35     rr -> rrr [color=red]
     36     rr -> rrg [color=green]
     37     rg -> rgb [color=blue]
     38     rg -> rgr [color=red]
     39     rg -> rgg [color=green]
     40     gb -> gbb [color=blue]
     41     gb -> gbr [color=red]
     42     gb -> gbg [color=green]
     43     gr -> grb [color=blue]
     44     gr -> grr [color=red]
     45     gr -> grg [color=green]
     46     gg -> ggb [color=blue]
     47     gg -> ggr [color=red]
     48     gg -> ggg [color=green]
     49    }""")

NameError: name 'graphvizSource' is not defined

Ordnet utvalg uten tilbakelegging#

QED 7.8.3 s825

\(\frac{n!}{(n-k)!} = n \text{P} k\)

Eksempel: Urne med baller: Rekkefølgen er vesentlig, man legger ikke tilbake.

I iseksempelet blir da noen veier forbudte:

graphvizSource("""digraph G{
  compound=true;
  rankdir=TB
  ranksep="0.3"
  nodesep="0.01"
  pad=0
  node[shape="plaintext"]
  edge [fontsize=10]
  start [label="Start" ]
  {node [fontcolor=lightgray]; 
      bb bbb bbr bbg
      brr brb
      bgg bgb
      rbb rbr
      rr rrb rrr rrg
      rgg rgr
      gbb gbg
      grr grg
      gg ggb ggr ggg
      }
  start -> b [color=blue]
  start -> r [color=red]
  start -> g [color=green]
    b -> bb [color=blue style=dotted]
    b -> br [color=red]
    b -> bg [color=green]
    r -> rb [color=blue]
    r -> rr [color=red style=dotted]
    r -> rg [color=green]
    g -> gb [color=blue]
    g -> gr [color=red]
    g -> gg [color=green style=dotted]
    bb -> bbb [color=blue style=dotted]
    bb -> bbr [color=red]
    bb -> bbg [color=green]
    br -> brb [color=blue style=dotted]
    br -> brr [color=red style=dotted]
    br -> brg [color=green]
    bg -> bgb [color=blue style=dotted]
    bg -> bgr [color=red]
    bg -> bgg [color=green style=dotted]
    rb -> rbb [color=blue style=dotted]
    rb -> rbr [color=red style=dotted]
    rb -> rbg [color=green]
    rr -> rrb [color=blue]
    rr -> rrr [color=red style=dotted]
    rr -> rrg [color=green]
    rg -> rgb [color=blue]
    rg -> rgr [color=red style=dotted]
    rg -> rgg [color=green style=dotted]
    gb -> gbb [color=blue style=dotted]
    gb -> gbr [color=red]
    gb -> gbg [color=green style=dotted]
    gr -> grb [color=blue]
    gr -> grr [color=red style=dotted]
    gr -> grg [color=green style=dotted]
    gg -> ggb [color=blue]
    gg -> ggr [color=red]
    gg -> ggg [color=green style=dotted]
   }""")
../../../_images/58079a78351b63c7fe6f4a9d42dc9cc50c8033fcf1b805ebbe817a1b25bbb8ad.png

Uordnet utvalg med tilbakelegging#

Binomialkoeffisienten

\({n\choose k}\) = \({n!} \over {k!(n - k)!}\) = \(n\text{C}k\)

Eksempel: Lotto

graphvizSource("""digraph G{
  compound=true;
  rankdir=TB
  ranksep="0.3"
  nodesep="0.01"
  pad=0
  node[shape="plaintext"]
  edge [fontsize=10]
  start [label="Start" ]
  start -> b [color=blue]
  start -> r [color=red]
  start -> g [color=green]
    b -> bb [color=blue]
    b -> br [color=red]
    b -> bg [color=green]
    r -> br [color=blue]
    r -> rr [color=red]
    r -> rg [color=green]
    g -> bg [color=blue]
    g -> rg [color=red]
    g -> gg [color=green]
    bb -> bbb [color=blue]
    bb -> bbr [color=red]
    bb -> bbg [color=green]
    br -> bbr [color=blue]
    br -> brr [color=red]
    br -> brg [color=green]
    bg -> bbg [color=blue]
    bg -> brg [color=red]
    bg -> bgg [color=green]
    rr -> brr [color=blue]
    rr -> rrr [color=red]
    rr -> rrg [color=green]
    rg -> brg [color=blue]
    rg -> rrg [color=red]
    rg -> rgg [color=green]
    gg -> bgg [color=blue]
    gg -> rgg [color=red]
    gg -> ggg [color=green]
   }""")
../../../_images/a81fa18efacf4b8fd252e37c8cfa88169368cd4e4a0204feb135604fe46d1078.png

Uordnet utvalg uten tilbakelegging#

\({(n + k - 1)!} \over {k!(n - 1)!}\) = \({n + k - 1} \choose {k}\) = \({n + k - 1} \choose {n - 1}\)

QED 7.8.3 s828

graphvizSource("""digraph G{
  compound=true;
  rankdir=TB
  ranksep="0.3"
  nodesep="0.01"
  pad=0
  node[shape="plaintext"]
  edge [fontsize=10]
  {node [fontcolor=lightgray]; 
      bb rr gg
      bbb bbr bbg brr rrr rrg bgg rgg ggg
      }
  start [label="Start" ]
  start -> b [color=blue]
  start -> r [color=red]
  start -> g [color=green]
    b -> bb [color=blue style=dotted]
    b -> br [color=red]
    b -> bg [color=green]
    r -> br [color=blue]
    r -> rr [color=red style=dotted]
    r -> rg [color=green]
    g -> bg [color=blue]
    g -> rg [color=red]
    g -> gg [color=green style=dotted]
    bb -> bbb [color=blue style=dotted]
    bb -> bbr [color=red]
    bb -> bbg [color=green]
    br -> bbr [color=blue]
    br -> brr [color=red style=dotted]
    br -> brg [color=green]
    bg -> bbg [color=blue]
    bg -> brg [color=red]
    bg -> bgg [color=green style=dotted]
    rr -> brr [color=blue style=dotted]
    rr -> rrr [color=red style=dotted]
    rr -> rrg [color=green]
    rg -> brg [color=blue]
    rg -> rrg [color=red]
    rg -> rgg [color=green style=dotted]
    gg -> bgg [color=blue style=dotted]
    gg -> rgg [color=red style=dotted]
    gg -> ggg [color=green style=dotted]
   }""")
../../../_images/4670dc61178b90ae1c739f373fe2267f7ff5f2acc7b9f57155708255cea8c250.png

Lover 3#

Binomisk sannsynlighetsfordeling#

QED 7.9 834

ndla S1

Hypergeometrisk sannsynlighetsfordeling#

QED 7.10 s839

ndla S1

Aspekter#

Hvordan formidle#

Talltyper#